Bayesian shrinkage towards sharp minimaxity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Near Minimaxity of Wavelet Shrinkage

We discuss a method for curve estimation based on n noisy data; one translates the empirical wavelet coe cients towards the origin by an amount p 2 log(n) = p n. The method is nearly minimax for a wide variety of loss functions { e.g. pointwise error, global error measured in L p norms, pointwise and global error in estimation of derivatives { and for a wide range of smoothness classes, includi...

متن کامل

Bayesian shrinkage

Penalized regression methods, such as L1 regularization, are routinely used in high-dimensional applications, and there is a rich literature on optimality properties under sparsity assumptions. In the Bayesian paradigm, sparsity is routinely induced through two-component mixture priors having a probability mass at zero, but such priors encounter daunting computational problems in high dimension...

متن کامل

Bayesian semiparametric multiple shrinkage.

High-dimensional and highly correlated data leading to non- or weakly identified effects are commonplace. Maximum likelihood will typically fail in such situations and a variety of shrinkage methods have been proposed. Standard techniques, such as ridge regression or the lasso, shrink estimates toward zero, with some approaches allowing coefficients to be selected out of the model by achieving ...

متن کامل

Bayesian Wavelet Shrinkage

Bayesian wavelet shrinkage methods are defined through a prior distribution on the space of wavelet coefficients after a Discrete Wavelet Transformation has been applied to the data. Posterior summaries of the wavelet coefficients establish a Bayes shrinkage rule. After the Bayes shrinkage is performed, an Inverse Discrete Wavelet Transformation can be used to recover the signal that generated ...

متن کامل

Bayesian Shrinkage Variable Selection

We introduce a new Bayesian approach to the variable selection problem which we term Bayesian Shrinkage Variable Selection (BSVS ). This approach is inspired by the Relevance Vector Machine (RVM ), which uses a Bayesian hierarchical linear setup to do variable selection and model estimation. RVM is typically applied in the context of kernel regression although it is also suitable in the standar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2020

ISSN: 1935-7524

DOI: 10.1214/20-ejs1732